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Based upon computer analysis, the Gibbs-DiMarzio ( G - D M )  theory is evaluated for the case of (a) 
constant V 0 and (b) constant r where V 0 is the fractional free volume at T~ and r is the ratio of the hole 
(E0) to the flex (e) energy. For each respective case, results are presented in a reduced variables 
format that indicate the extent to which r and V 0 vary at the transition temperature as a function of 
the reciprocal degree of polymerization (p - l ) .  To further account for chemical differences that exist 
among polymers, an index (n) is_ introduced that ultimately incorporates the effective number average of 
chain atom segments (,~) per P. Using these reduced variables plots, the effects of V o, r, and n are 
compared with the Tg data for four well-documented polymers. Although the theory adequately 
describes the PMMA, PS, and PVC data, for P=MS the fit is doubtful. The analysis demonstrates that, in 
order to maintain V o within the range of 0.015-0.045, r must remain within approximately 1.0-1.1. 
Moreover, under conditions of either constant V 0 or r, other more flexible polymers require that n'~ 10. 

Keywords Free volume; glass transition; poly(methyl methacrylate); polystyrene; poly(vinyl 
chloride); poly-~-methyl styrene 

INTRODUCTION 

The statistical mechanical theory of the glass transition 
has received considerable attention since Gibbs and 
DiMarzio (G-DM) introduced it 25 years ago 1. Over that 
period a number of workers have utilized the G - D M  
theory to predict the empirically determined dependence 
of the glass transition temperature (T~) on p61ymer 
m 2 l O  olecular weight ( M W )  - . This theoretical 
relationship between T and M W  is embodied in two 

• . g . 

parametric equatmns which contain both intra- and 
intermolecular contributions to the configurational 
entropy. If the lattice coordination number, z, is assumed 
to equal 4, then these equations can be stated for 
polydisperse systems as follows: 

2flexpfl 
1 + 2expfl 

- In[1 + 2expfl] 

92 1 

2~S  x 2 

Here fl is a dimensionless parameter equal to -s/kTo, e is 
the energy difference between g a u c h e  and t rans  

conformations for the hydrocarbon chain (i.e., the 
intramolecular or flex energy), 92 is the number average of 
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chain atom segments, V o is the fractional free volume at Tg, 
k is Boltzmann's constant, ~t is the energy of interaction 
between a pair of chemically unbonded but nearest 
neighbouring segments (i.e., the intermolecular or hole 
energy), and S x is the fraction of these unbonded but 
nearest neighbouring segments, where 

(~ + 1X1 - v o)  

S~ = 1 - S O - 292v ° +(92 + 1X1 - v o) (3) 

Recently a method for greatly simplifying equation (1) 
was introduced 11. This procedure was based upon a plot 
of the reduced T O versus  the reciprocal number average 
degree of polymerization, P -  1. When 92 was equated to 2P 
(92/P constant over the range of P-1), a single curve was 
generated which was independent of e and only slightly 
dependent upon V 0 over the range P = 1 0  to oo for 
0.015 ~< V o ~<0.045. Comparison of selected empirical 
results for five different polymers of varying degrees of 
stiffness with the theoretical predictions of equation (1) 
indicated that the G - D M  relationship failed to adequately 
describe the T_ vs. M W  behaviour for this representative 
collection of ~ polymers• These preliminary results 
suggested that improvements in the accuracy of the 
theoretical predictions might require a re-examination of 
the Flory-Huggins lattice model 12 and the associated 
definition of 92 upon which the G - D M  theory is based. 

The present effort expands the previous reduced 
variables plot, which assumed a constant value of V o over 
the molecular weight range, to include the parallel 
development of a constant value for the ratio of the inter- 
/intramolecular energy (i.e., r). Moreover by setting 92 = n P  

(n=any  positive number), a simple modification is 
introduced which may relate not only the chemical 
structure but also the intrinsic mobility within a given 
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Figure I Reduced variables plot indicating the dependence of the  
glass transition (Tg) upon the logarithmic reciprocal degree of poly- 
merization (P)--I as a function of free volume fraction ( V 0 = 0.015, 
0.030, and 0.045) and number average of chain atom segments per 
P(n = 0.5, 1,2, 3, 4, 6, 10, and 25). The relationships assume any 
constant value of e and require the variation in r indicated in 
Figure 2 

1.5 
VO= 0.015 

Equations (1) and (5) can now be solved iteratively by 
maintaining £ and V o (or ~ and r) constant while 
simultaneously varying r (or V0) until a unique fl, derived 
from equation (5), satisfies equation (1). Each situation 
will now be considered for several combinations of ~ and 
V o (or £ and r). 

Using the reduced variables method, a plot of TJTo~ 
- -  . . . . g 

versus P -  1 ]s presented xn Figure 1. Here theoretical lines 
have been obtained as a function of V o and n, where V o has 
been set equal to 0.015, 0.030 and 0.045, respectively and n 
spans the range 0.5-25. The abscissa has been plotted on a 
logarithmic scale to better resolve the data between the 
values of 10a/P = 1-10 and to best assess the statistical fit 
of the theory to the data 1 s,16. The family of lines shown in 
the figure is quite dependent upon the value of n but 
relatively insensitive to V 0. However, as a consequence of 
the conditions imposed by the solution of equations (1) 
and (5), this slight dependence of the theory on V o requires 
that the value of r varies significantly. This is 
demonstrated in Figure 2 where r is plotted as a function 
of P -  1 for the parameters, V o and n. While the absolute 
value of r varies considerably with changes in P -  i, Vo and 
n, the relative change in r depends primarily upon the 

-= - ' 1.0 
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Figure 2 Relationship between the parameter r and (ff)--I as 
determined from equations (1) and (5). Values for V 0 and 
correspond to those indicated in Figure I 

I00 

polymer. The resulting family of curves is compared with 
detailed data sets compiled for a number of polymers, and 
the adequacy of the G - D M  theory is reconsidered. 

THEORETICAL CONSIDERATIONS 

By setting 2~ equal to the hole energy 13, Eo, and letting 
r= Eo/e 14, equation (2)can be rewritten as: 

/~r= ln(V°/S°2) 
s /  (4) 

Substitution for S O and S= and rearrangement of equation 
(4) yields: 

V o - 2 lnL2~ V ° + (~+--[X 1 - V o) 
(5) 

Figure 3 Reduced variables plot indicating the dependence of the  
glass transition (7"#) upon the logarithmic reciprocal degree of poly- 
merization (~')--1 ~s a function of constant values of the ratio of 
hole energy to flex energy (r = 0.8, 1.0, and 1.2) and number aver- 
age of chain atom segments per P(n = 0.5, 1, 2, 3, 4, 6, 10, and 25). 
The  relationships assume any constant value of e and require the  
variation in V 0 indicated in Figure 4 
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Figure 4 Relationship between the parameter V 0 and (~)--1 as 
determined from equations (1) and (5). Values for r and ~ corres- 
pond to those indicated in Figure 3 
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Reduced variables plot for poly(methyl methacrylate): ©, Beevers and White2; ~ ,  Kim et a1.17; ~_, 
Kusy and Greenberg3; 0 ,  Kusy et al.4; C), Kusy et al. on blendsS; ~, Prat£S; ~, Thompson on isotactic 
PMMA19; and (D, Thompson on dyndiotactic PMMA 19. Curves represent solution of the G-DM equations 
for combinations of n = 1, 2 and either V 0 = 0.030 or r = 1.0 as indicated 

value of n. For  example if £ = 2/5, r varies by ~ 20% for 
1/o=0.015, 0.030 and 0.045 over the range of p - l .  The 
magnitude of this change decreases for increasing n. 

The situation in which r is assumed constant at 0.8, 1.0 
and 1.2, respectively, is shown in Figure 3. Here the 
reduced plot is relatively independent of r but once again 
rather sensitive to n. While a family of lines similar to 
those of Figure 1 is pro'duced when n=0.5-25,  
comparison of these two figures indicates that when r is 
held constant the curves corresponding to the same values 
of n are shifted upward. Analogous to the first case, a 
constant value for r requires variation in V o (cf Figure 4). If 
£ = 2/5, then V 0 will vary between ~ 39 and 46% over the 
range of p - 1  for r=0.8-1.2. 

RESULTS 

From the-available literature the Tg versus molecular 
weight data of four different polymers 2-7'17-29 were 
compared with the theoretical curves derived from 
equations (1) and (5). This collection included three vinyl 
polymers, poly(methyl methacrylate) (PMMA) 2 - 5.17 - ~ 9, 
polystyrene (PS) 2°-28, and poly(vinyl chloride) (PVC) 6, 
and one divinyl polymer, poly-=-methyl styrene 
(P0cMS) 7'29. These data sets represented an expansion of 
previous preliminary results 11 to include all available 
published information for both pure polymers and blends 
regardless of tacticity, test methodology, physical form, or 
thermal history. These particular polymers were included 
in this study because their data sets contained at least 25 
data points reasonably distributed over the range/5-1 = 1 
to 100. Such restrictions were based on a knowledge of the 
prerequisites necessary for a meaningful statistical 
analysis 15. 

The 122 point data set for PMMA is shown in the 
reduced plot of Figure 5. Superposed are the theoretical 
curves for n = 1, 2, V o = 0.030, and n = 1, r = 1.0. While each 
of these lines best describes only a particular portion of 
the data, to a first approximation the first two curves 

provide an upper and lower bound, whereas the third 
curve best represents the entire range of P -  1. A somewhat 
different situation exists for PS which contains 110 data 
points (cf Figure 6). Here the parametric lines n =  3, 
1/o=0.030, and n=2 ,  r = l . 0  delineate an upper bound 
while the curves for n =2,  V o =0.030, and n = 1, r = 1.0 
represent the lower limit. To adequately describe the 
entire data set parametric values intermediate to those 
shown in the figure are apparently required. For the case 
of PVC (37 data points) the match between the curve n = 2, 
I/o=0.030 appears quite good with n=2,1,  r = l . 0  
identifying the upper and lower limits, respectively (cf 
Figure 7). In contrast, the P~MS results (25 data points) 
shown in Figure 8 seem to be rather distinctly divided 
among particular curves depending upon the region of 
/5-1 under consideration. Over the first decade the results 
are best represented between n = 2, F o = 0.030, and n = 1, 
r = 1.0 while in the second decade they fall between n = 1, 
V o =0.030, and n =0.5, r = 1.0. Within the present context, 
no one curve can adequately describe this data set. 

DISCUSSION 

When the reduced variables method was first introduced, 
the G - D M  theory (equation (1)) was shown to be 
reasonably independent of V o over the range 
0<~ 103//5 ~< 10011. Moreover when the mean number of 
chain segments were restricted to a value of 2P, the theory 
was not applicable to many polymers. This major 
shortcoming was attributed to the inability of the theory 
to take into account differences in chemical structure 
among polymers. The current analysis places these results 
in better perspective by the inclusion of equation (5) and 
by the addition of the index n. The first considers the 
energy ratio (r) as the intermolecular energy per unit of 
intramolecular energy, while the second defines n as the 
number of chain segments per repeat unit, Yc/P. Since each 
segment is assumed to occupy one lattice site, n represents 
a chain segment density, i.e., the number of lattice sites 
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Figure 6 Reduced  var iab les  p lo t  f o r  po lys ty rene:  A ,  Enns et al.2°; A,  Fox and  Flory21; ~ and  ~.~, G land t  et 
al. on blends22; A',, Krause and  Iskandar23; z~, R i cha rdson  and  Savil124; ~ ,  Rud in  and  Burgin25; A and ~., 
S tadn ick i  et a/.26; Z~, Ueber re i te r  and  Kanig27; a n d  Ea, Ueber re i te r  and  Kan ig  on b lends  2e. Curves  represent 
solution of the G-DM equations for combinations of n = l ,  2 and  3 and  e i ther  I /0- -0.030 o r  t = 1 . 0  as ind ica ted  
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Figure 7 Reduced  var iab les  p lo t  f o r  p o l y ( v i n y l  ch lo r ide )  w i t h  data  f rom Pezz in  et al. ( [~)6. The curves  
represent the so lu t i on  o f  the G - D M  e q u a t i o n s  fo r  c o m b i n a t i o n s  o f  n = 1 and  2 and  e i ther  V 0 = 0 . 0 3 0  or  r = 
1.0 as ind ica ted  

occupied per mer. With these modifications either the 
constant parameter  V o or r, but not both, could be plotted 
against n to generate the complete solution set shown in 
Figures 1-4. While the first pair is most consistent with the 
iso-free volume theories which require that the glass 
transition occur at a constant value of the free volume 
fraction (cf Figure 1) 30- 33, the second set requires that V o 
decrease monotonically with decreasing molecular weight 
(cf Figure 4). In their review of the literature, Eisenberg 

' 3 4  • • and Salto have indicated that free volume at T~ is not 
absolutely constant and independent of molecular weight. 
Moreover Williams 3s has reported a general decrease in 

the relative free volume fraction of polystyrene as the 
molecular weight was reduced from 134000 to 1675. 
Similar observations were made by Miller 36 for both 
polystyrene and polyisobutylene fractions. This net 
decrease in free volume as a function of molecular weight 
occurs because the increased free volume associated with 
the greater number of chain ends is more than offset by the 
reduced free volume associated with a lower T 0. 

To further amplify the interrelationship between V 0 and 
r the solution of the G - D M  equation is presented in 
Figure 9 on an absolute rather than a relative basis. In fact 
this/~ vs . /~-  1 plot represents a more detailed version of 
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Figure 8 Reduced variables plot for poly-~-methyl styrene with data from Cowie and Toporowski 7 on 
atactic ( ~ )  and syndiotactic (~ ' )  PCMS and from Malhotra et aL 29 (V ) .  The curves represent the solution of 
the G - D M  equations for combinations of n=0.5, 1 and 2 and either Vo=0.030 or r=1,0 as indicated 

Figure 3, ref. 14, in which the upper and lower boundaries 
of the shaded area represent the iso-free volume fraction 
lines, V o =0.045 and V o =0.015. Of the several r curves 
delineated within these boundaries, only the parametric 
lines r = 1.0 and 1.1 offer solutions to the equations over 
the entire molecular weight range. Thus the r and V o 
combinations which can be utilized in the equations (I) 
and (5) are restricted. If r is kept within the limits of 1.0- 
1.1, the magnitude of the intra- and intermolecular 
energies will be approximately equal. Values of r can be 
increased within these limits either by increasing E o or by 
decreasing e. Table 1 summarizes the consequences of such 
variations assuming a reference energy of 1.5 kcal mol-1.  
The results indicate that a change in e has a significantly 
greater and opposite effect on Tg than does a 
corresponding variation in E o. While this finding is 
supported by the observations of Moacanin and Simha 37, 
Eisenberg and Saito 34 have suggested that under certain 
situations the reverse may be true. 

Recognizing the constraints imposed by the parameters 
r and V o on the G - D M  theory, the experimental results 
presented in Figures 5-8 can be reconsidered as a function 
of n. If for PMMA, PS and PVC, V o is assumed to equal 
0.030 (cf Figure 2 for corresponding variations in r), then 
the mean number of lattice sites occupied per mer equals 
~ 1.5, 2.5 and 2, respectively. This implication, that PS is 
more flexible than either PMMA or PVC, is contrary to 
the results reported in the literature 38"39. In contrast for 
P~tMS, no single combination of n and constant V o or r 
will adequately represent the empirical results, although 
the low value of n observed for high P -  1 is consistent with 
the recognized stiffness of the molecule 38'39. Additional 
data sets for a number of polymers having various 
stiffnesses a- l° '4°-4s  (cf Figure 10) suggest that large 
values of n (n ~ 10) would be required to describe the most 
flexible polymers such as polydimethyl siloxane. To 
attribute any physical significance to such large values of n 
is difficult, unless n is regarded as being representative of 
the 'effective' mean number of lattice sites occupied per 
mer. If a dynamic connotation is more correct, then the 

Table 1 Comparison of  the effects of changes in E 0 and • on Tg 

E o • 
r (kcal mol - t )  (kcal mo1-1 ) - ~ *  Tg (K) Tg(%) 

1 1.50 1.50 2.4963 302.3 -- 
1.1 1.65 1.50 2.4412 309.1 + 2,25 
1.1 1.50 1.35 2.4412 278.0 --8.04 

* Calculated for  ( 103/ff ") = 40 

(2Q 
I 

L) 2£) 4 0  OL) 8 0  I 0 0  

Figure9 Relationship between the dimensionless variable, 
--8 = e/kTg, and the reciprocal degree of polymerization ~---I as a 
funct ion of r. The upper and lower portions of  the shaded regions 
represent the iso-free volume fraction lines V 0 = 0.045 and V 0 = 
0.015, respectively. Only the curves r = 1.0 and 1.1 lie within this 
region over the entire range of ~'--I 
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Figure 10 
(,K') 4°, Beevers and White (N) 41, and Keavney and Eberlin (0 )  42 on polyacrylonitrile; Faucher (0 )  on 
polybutylene oxide43; Cowie and McEwen ( 0 )  on polydimethyl siloxaneg; Griffiths and Van Laeken ( + )  on 
poly-N-vinylcarbazole~;  Eisenberg ( 0  and 0 )  on sodium phosphate polymers1°; Ke (1~) 4s end Cowie  a on 
atactic (141), isotactic (Irl), and syndiotactic ( I )  polypropylene; Allen (<>)46 and Faucher ((>)= on 
polypropylene oxide; and Enns and Boyer ('1,) 47 and Wiley and Brauer (4') 4a on polyvinylacetate. 
Comparison of the data with the curves of Figure I and 3 indicates that very flexible polymers would best 
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Reduced variables plot for polymers with varying degrees of chain stiffness including, Beevers 

be describe~l by an n ~  I 0 in combination with constant V o or r 

introduction of n into the theory not only evaluates the 
segment size on the basis of a specified lattice space size 
(e.g., a methyl group) 49, but also indicates the inherent 
flexibility of the molecule within its lattice site, i.e., its 
jump frequency. In this regard the theory might be further 
tested if n were partitioned to represent values of 'beads' 
and 'flexes '39 in the appropriate terms of equations (1) and 
(5). 
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